Великий учёный Фалес Милетский основал одну из прекраснейших наук – геометрию. Известно, что Фалес Милетский имел титул одного из семи мудрецов Греции, что он был поистине первым философом, первым математиком, астрономом и вообще первым по всем наукам в Греции. Является автором многих геометрических понятий и теорем, в том числе теоремы о пропорциональных отрезках.
Теорема Фалеса до сих пор используется в морской навигации в качестве правила о том, что столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется курс судов друг на друга. Особое место в планиметрии отведено двум замечательным теоремам: теореме Чевы и теореме Менелая. Эти теоремы не включены в базовую программу курса геометрии средней школы, но их изучение (и применение) рекомендуется всем, кто интересуется математикой чуть больше, чем это возможно в рамках школьной программы. Чем же интересны эти теоремы? Сначала отметим, что при решении геометрических задач продуктивно сочетаются два подхода:
- один основан на определении базовой конструкции (например: треугольник – окружность; треугольник – секущая прямая; треугольник – три прямых, проходящих через его вершины и пересекающиеся в одной точке; четырехугольник с двумя параллельными сторонами и т.п.),
- а второй – метод опорных задач (простых геометрических задач, к которым сводится процесс решения сложной задачи).
Так вот, теоремы Менелая и Чевы относятся к наиболее часто встречающимся конструкциям: первая рассматривает треугольник, стороны или продолжения сторон которого пересечены некоторой прямой (секущей), во второй речь идет о треугольнике и трех прямых, проходящих через его вершины, пересекающиеся в одной точке.
Цель работы – изучить теоремы Фалеса, Чевы и Менелая и рассмотреть применение этих теорем к решению планиметрических задач.
Хотя принято считать, что западная философия начинается с греков однако первые философские системы возникли не в самой Греции а на западном побережье Малой Азии - в ионийских городах, которые были основаны греками и в которых раньше, чем в самой Греции получили развитие промышленность, торговля и духовная культура Этот район еще называют Ионией, поэтому философские системы разработанные философами - выходцами из этого района, носят название ионийской философии. Впервые философские воззрения возникли в Милете в VI-V веках до Р.Х. Милет в то время был крупнейшим из всех малоазиатских греческих городов. Фалес происходил из знатного рода. В своей жизни и творчестве соединял вопросы практики с теоретическими проблемами, касающимися вопросов мироздания. Он много путешествовал по разным странам используя эти путешествия для расширения и приобретения знания Был всесторонним ученым и мыслителем, изобрел несколько астрономических приборов. Стал известен в Греции тем, что удачно предсказал солнечное затмение в 585 г. до Р.Х. Все свои натурфилософские познания Фалес использовал для создания стройного философского учения. Так, он считал, что все существующее порождено водой, понимая под ней влажное первовещество. Вода - это источник, из которого все постоянно происходит. При этом вода и все, что из нее произошло, не являются мертвыми, они одушевлены. В качестве примера своей мысли Фалес приводил такие вещества как магнит и янтарь: так как магнит и янтарь порождают движение значит они обладают душой. Фалес представлял весь мир одушевленным, пронизанным жизнью. Он заложил теоретические основы учения, имеющее название гилозоизм. Хотя гилозоизм имеет свои корни в мифологии, у Фалеса он получает философское обоснование. По Фалесу, природа, как живая, так и неживая, обладает движущим началом, которое называется такими именами, как душа и Бог. В области науки Фалесу принадлежит заслуга в определении времени солнцестояний и равноденствий, в установлении продолжительности года в 365 дней, открытие факта движения Солнца по отношению к звездам. Он также имеет заслуги в области создания научной математики. Так, считают, что он первым сумел вписать треугольник в круг. Все это принесло Фалесу славу первого мудреца из знаменитых "семи мудрецов" древности.
1.1.2. Формулировка и доказательство теоремы Фалеса Теорема Фалеса: если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.2
Доказательство
Пусть на прямой l1 отложены равные отрезки А1А2, А2А3, А3А4, …и через их концы проведены параллельные прямые, которые пересекают прямую l2 в точках В1, В2, В3, В4, … (рис.1). Требуется доказать, что отрезки В1В2, В2В3, В3В4, … равны друг другу. Докажем, например, что В1В2 = В2В3.
Рассмотрим сначала случай, когда прямые l1 и l2 параллельны (рис. 1-а). Тогда А1А2 = В1В2 и А2А3 = В2В3 как противоположные стороны параллелограммов А1В1В2А2 и А2В2В3А3, так как А1А2 = А2А3, то и В1В2 = В2В3.
Если прямые l1 и l2 не параллельны, то через точку В1 проведем прямую l, параллельную прямой l1 (рис.1, б). Она пересечет прямые А2В2 и А3В3 в некоторых точках С и D. Так как А1А2 = А2А3, то по доказанному В1С = СD. Отсюда получаем В1В2 = В2В3. Аналогично можно доказать, что В2В3 = В3В4 и т.д. рис 1
1.2. Теорема Менелая 1.2.1. Исторические сведения о Менелае Александрийском Менелай Александрийский, математик и астроном. Время его жизни и деятельности определяется приведенными в "Алмагесте" Птолемея двумя астрономическими наблюдениями, которые Менелай произвел в Риме в первом году царствования Траяна, т. е. в 98 г. после Р. Х.
Менелаем были написаны два сочинения: "О вычислении хорд", в 6 книгах, и "Сферика", в 3 книгах. Из них первое совсем не дошло до нас. Утрачен также и греческий оригинал второго, содержание которого известно современной науке по его латинским переводам, составленным по взаимно подтверждающим друг друга арабским и еврейским переводам того же сочинения. Главным предметом "Сферики" М. служит сферическая тригонометрия. Из числа многих предложений, для нас впервые встречающихся в этом сочинении, самым замечательным считается обыкновенно теорема Менелая, которая прежде называлась правилом шести количеств. Менелай, известен еще и как геометр, работавший в области изучения кривых высших порядков3.
1.2.2. Формулировка и доказательство теоремы Менелая Теорема Менелая
Эта теорема (вместе с обратной) показывает закономерность, наблюдающуюся для отношений отрезков, соединяющих вершины некоторого треугольника и точки пересечения секущей со сторонами (продолжениями сторон) треугольника.
На чертежах приведены два возможных случая расположения треугольника и секущей. В первом случае секущая пересекает две стороны треугольника и продолжение третьей, во втором – продолжения всех трех сторон треугольника.
Теорема 1. (Менелая) Пусть пересечен прямой, не параллельной стороне АВ и пересекающей две его стороны АС и ВС соответственно в точках В1 и А1, а прямую АВ в точке С1 тогда
Теорема 2. (обратная теореме Менелая) Пусть в треугольнике АВС точки А1, В1, С1 принадлежит прямым ВС, АС, АВ соответственно, тогда, если то точки А1, В1, С1 лежат на одной прямой.
Доказательство первой теоремы можно провести так: на секущую прямую опускают перпендикуляры из всех вершин треугольника. В результате получают три пары подобных прямоугольных треугольников. Фигурирующие в формулировке теоремы отношения отрезков заменяют на отношения перпендикуляров, соответствующих им по подобию. Оказывается, что каждый отрезок – перпендикуляр в дробях будет присутствовать дважды: один раз в одной дроби в числителе, второй раз, в другой дроби, в знаменателе. Таким образом, произведение всех этих отношений окажется равным единице.
Обратная теорема доказывается методом «от противного». Предполагается, что при выполнении условий теоремы 2 точки А1, В1, С1 не лежат на одной прямой. Тогда прямая А1В1 пересечет сторону АВ в точке С2, отличной от точки С1. При этом, в силу теоремы 1, для точек А1, В1, С2 будет выполняться то же отношение, что и для точек А1, В1, С1. Из этого следует, что точки С1 и С2 поделят отрезок AB в одинаковых отношениях. Тогда эти точки совпадут – получили противоречие4.